Skip to main content

Overview

Anthropic’s Claude models provide exceptional reasoning capabilities and analytical thinking, making them ideal for complex geospatial analysis and data interpretation tasks in Nika.

Available Models

Claude Sonnet 4

Best for: Complex analysis, reasoning, and detailed geospatial workflows

Key Capabilities

  • Advanced Reasoning: Superior logical thinking and problem-solving
  • Context Understanding: Deep comprehension of spatial relationships
  • Code Generation: High-quality, well-documented code output
  • Analysis: Sophisticated statistical and spatial analysis
  • Documentation: Excellent technical writing and documentation

Performance in Nika Tasks

Coding
  • Python: Outstanding code generation with proper error handling
  • JavaScript/TypeScript: Excellent frontend and mapping code
  • SQL: Very good query optimization and complex joins
  • Geospatial Libraries: Deep understanding of GeoPandas, PostGIS, Leaflet
Example Output Quality:
import geopandas as gpd
import pandas as pd
from shapely.geometry import Point
import folium

def create_interactive_map(gdf, column_name, title="Interactive Map"):
    """
    Create an interactive choropleth map with proper styling and popups.
    
    Parameters:
    gdf (GeoDataFrame): Input geospatial data
    column_name (str): Column to visualize
    title (str): Map title
    
    Returns:
    folium.Map: Interactive map object
    """
    # Calculate statistics for better visualization
    min_val = gdf[column_name].min()
    max_val = gdf[column_name].max()
    
    # Create base map centered on data
    center_lat = gdf.geometry.centroid.y.mean()
    center_lon = gdf.geometry.centroid.x.mean()
    
    m = folium.Map(
        location=[center_lat, center_lon],
        zoom_start=10,
        tiles='cartodbpositron'
    )
    
    # Add choropleth layer with proper styling
    folium.Choropleth(
        geo_data=gdf.__geo_interface__,
        name='choropleth',
        data=gdf,
        columns=['id', column_name],
        key_on='feature.properties.id',
        fill_color='YlOrRd',
        fill_opacity=0.7,
        line_opacity=0.2,
        legend_name=column_name,
        bins=6
    ).add_to(m)
    
    # Add interactive popups
    for idx, row in gdf.iterrows():
        folium.Popup(
            f"<b>{row.get('name', 'Location')}</b><br>"
            f"{column_name}: {row[column_name]:,.0f}",
            parse_html=True
        ).add_to(folium.GeoJson(
            row.geometry,
            style_function=lambda x: {'fillColor': 'transparent', 'color': 'black', 'weight': 1}
        ).add_to(m))
    
    folium.LayerControl().add_to(m)
    return m
Map Creation
  • Interactive Maps: Excellent Leaflet and Mapbox implementations
  • Static Maps: High-quality matplotlib and plotly outputs
  • Custom Styling: Sophisticated visual design and theming
  • Performance Optimization: Efficient rendering for large datasets
Data Analysis
  • Statistical Analysis: Advanced statistical methods and interpretation
  • Spatial Analysis: Complex spatial operations and algorithms
  • Trend Detection: Sophisticated pattern recognition
  • Data Quality: Comprehensive data validation and cleaning
SQL Execution
  • Query Optimization: Excellent performance tuning
  • Complex Joins: Advanced spatial and temporal joins
  • Indexing: Strategic index recommendations
  • Error Handling: Robust error management and recovery

Claude Haiku 3.5

Best for: Fast processing, real-time applications, and cost-effective solutions

Key Capabilities

  • Speed: Rapid response times for real-time applications
  • Efficiency: Cost-effective for high-volume tasks
  • Reliability: Consistent performance across different tasks
  • Scalability: Excellent for batch processing

Performance in Nika Tasks

Coding
  • Speed: Very fast code generation
  • Quality: Good code quality with basic error handling
  • Documentation: Adequate inline comments and docstrings
  • Best For: Simple to moderate complexity tasks
Map Creation
  • Basic Maps: Good quality for standard visualizations
  • Performance: Fast rendering for simple maps
  • Styling: Basic but effective visual design
  • Best For: Quick prototypes and simple dashboards
Data Analysis
  • Basic Analysis: Good for standard statistical operations
  • Speed: Fast processing of routine analyses
  • Interpretation: Adequate result explanation
  • Best For: Regular reporting and monitoring
SQL Execution
  • Standard Queries: Good performance on common queries
  • Basic Optimization: Adequate query tuning
  • Error Handling: Basic error management
  • Best For: Routine database operations

Use Case Recommendations

Choose Claude Sonnet 4 When:

  • Complex Analysis: Multi-step geospatial workflows
  • Research Projects: Academic or research-level analysis
  • Production Systems: Critical business applications
  • Documentation: Technical documentation and reports
  • Code Review: High-quality code generation and review

Choose Claude Haiku 3.5 When:

  • Real-time Applications: Live dashboards and monitoring
  • Batch Processing: High-volume data processing
  • Prototyping: Quick iterations and testing
  • Cost Optimization: Budget-conscious projects
  • Simple Tasks: Routine analysis and reporting

Configuration Examples

Claude Sonnet 4 Configuration

const sonnetConfig = {
  provider: 'anthropic',
  model: 'claude-sonnet-4',
  temperature: 0.3,
  maxTokens: 4096,
  systemPrompt: `You are an expert geospatial analyst. Provide detailed, 
  well-documented solutions with proper error handling and performance optimization.`,
  features: {
    reasoning: 'advanced',
    analysis: 'comprehensive',
    documentation: 'detailed'
  }
};

Claude Haiku 3.5 Configuration

const haikuConfig = {
  provider: 'anthropic',
  model: 'claude-haiku-3.5',
  temperature: 0.1,
  maxTokens: 2048,
  systemPrompt: `You are a fast, efficient geospatial assistant. 
  Provide quick, reliable solutions for common tasks.`,
  features: {
    speed: 'optimized',
    cost: 'efficient',
    reliability: 'high'
  }
};

Performance Metrics

MetricClaude Sonnet 4Claude Haiku 3.5
Response Time2-5 seconds0.5-2 seconds
Code Quality9.2/107.8/10
Analysis Depth9.5/107.5/10
Cost per Request$0.015$0.0025
Reliability99.5%99.2%

Best Practices

For Claude Sonnet 4

  1. Provide Context: Give detailed background information
  2. Specify Requirements: Clearly define output format and quality
  3. Use Iterative Refinement: Build complex solutions step by step
  4. Request Documentation: Ask for detailed explanations and comments

For Claude Haiku 3.5

  1. Keep Prompts Concise: Focus on essential information
  2. Use Templates: Leverage pre-defined patterns for consistency
  3. Batch Similar Tasks: Group related operations for efficiency
  4. Monitor Performance: Track response times and quality

Integration with Nika

API Usage

import nikaplanet.com as nai

# Initialize with Anthropic
client = nai.Client(
    llm_provider='anthropic',
    model='claude-sonnet-4'
)

# Complex analysis task
analysis_result = client.analyze_spatial_data({
    'data': 'cities.geojson',
    'analysis_type': 'hot_spot_analysis',
    'parameters': {
        'variable': 'population_density',
        'method': 'getis_ord_gi',
        'significance_level': 0.05
    }
})

Workflow Integration

# Multi-step workflow with different models
workflow = nai.Workflow()

# Use Haiku for data preprocessing
workflow.add_step(
    'preprocess',
    model='claude-haiku-3.5',
    task='data_cleaning'
)

# Use Sonnet for complex analysis
workflow.add_step(
    'analyze',
    model='claude-sonnet-4',
    task='spatial_analysis'
)

# Use Haiku for visualization
workflow.add_step(
    'visualize',
    model='claude-haiku-3.5',
    task='create_map'
)

results = workflow.execute()

Get Expert Help

⌘I