Skip to main content

Overview

xAI’s Grok models provide advanced reasoning capabilities and creative problem-solving approaches, making them ideal for innovative geospatial analysis and creative application development in Nika.

Available Models

Grok-3

Best for: Advanced reasoning, creative solutions, and innovative approaches to complex problems

Key Capabilities

  • Advanced Reasoning: Superior logical thinking and problem decomposition
  • Creative Problem Solving: Innovative approaches to complex challenges
  • Context Understanding: Deep comprehension of spatial and temporal relationships
  • Adaptive Learning: Ability to learn and adapt from examples
  • Multi-step Reasoning: Complex multi-step problem solving

Performance in Nika Tasks

Coding
  • Python: Excellent code generation with innovative approaches
  • JavaScript/TypeScript: Creative and efficient frontend solutions
  • SQL: Advanced query optimization with creative solutions
  • Geospatial Libraries: Innovative use of spatial libraries and algorithms
Example Output Quality:
import numpy as np
import pandas as pd
import geopandas as gpd
from shapely.geometry import Point, LineString, Polygon
from scipy.spatial import cKDTree
from sklearn.ensemble import RandomForestRegressor
import folium
from folium.plugins import MarkerCluster, HeatMap
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots

class AdvancedSpatialIntelligence:
    """
    Advanced spatial intelligence system with creative problem-solving capabilities.
    Combines multiple analytical approaches for comprehensive spatial understanding.
    """
    
    def __init__(self, data_sources=None):
        self.data_sources = data_sources or {}
        self.analysis_cache = {}
        self.insights = []
        
    def creative_spatial_analysis(self, points_data, polygons_data, analysis_type='comprehensive'):
        """
        Perform creative spatial analysis combining multiple approaches.
        
        Args:
            points_data: Point features for analysis
            polygons_data: Polygon features for context
            analysis_type: Type of analysis to perform
        """
        
        # Multi-approach analysis pipeline
        results = {
            'proximity_analysis': self._proximity_analysis(points_data, polygons_data),
            'density_analysis': self._density_analysis(points_data),
            'pattern_analysis': self._pattern_recognition(points_data),
            'predictive_analysis': self._predictive_modeling(points_data, polygons_data),
            'interactive_visualization': self._create_advanced_visualization(points_data, polygons_data)
        }
        
        # Generate insights using creative reasoning
        insights = self._generate_creative_insights(results)
        
        return {
            'results': results,
            'insights': insights,
            'recommendations': self._generate_recommendations(insights)
        }
    
    def _proximity_analysis(self, points, polygons):
        """Creative proximity analysis with multiple distance metrics."""
        if len(points) == 0 or len(polygons) == 0:
            return {}
        
        # Convert to GeoDataFrames
        points_gdf = gpd.GeoDataFrame(points)
        polygons_gdf = gpd.GeoDataFrame(polygons)
        
        # Multiple proximity metrics
        proximity_metrics = {}
        
        # Nearest polygon for each point
        nearest_polygons = []
        distances = []
        
        for idx, point in points_gdf.iterrows():
            point_geom = point.geometry
            min_distance = float('inf')
            nearest_polygon = None
            
            for poly_idx, polygon in polygons_gdf.iterrows():
                distance = point_geom.distance(polygon.geometry)
                if distance < min_distance:
                    min_distance = distance
                    nearest_polygon = poly_idx
            
            nearest_polygons.append(nearest_polygon)
            distances.append(min_distance)
        
        proximity_metrics['nearest_polygon'] = nearest_polygons
        proximity_metrics['distances'] = distances
        proximity_metrics['avg_distance'] = np.mean(distances)
        proximity_metrics['distance_std'] = np.std(distances)
        
        # Spatial clustering analysis
        if len(points) > 1:
            coords = np.array([[p.x, p.y] for p in points_gdf.geometry])
            tree = cKDTree(coords)
            
            # Find points within various radii
            radii = [100, 500, 1000, 5000]  # meters
            clustering_metrics = {}
            
            for radius in radii:
                neighbors = tree.query_ball_tree(tree, radius)
                cluster_sizes = [len(n) for n in neighbors]
                clustering_metrics[f'radius_{radius}m'] = {
                    'avg_cluster_size': np.mean(cluster_sizes),
                    'max_cluster_size': np.max(cluster_sizes),
                    'clusters_count': len([c for c in cluster_sizes if c > 1])
                }
            
            proximity_metrics['clustering'] = clustering_metrics
        
        return proximity_metrics
    
    def _density_analysis(self, points):
        """Creative density analysis with adaptive binning."""
        if len(points) == 0:
            return {}
        
        points_gdf = gpd.GeoDataFrame(points)
        bounds = points_gdf.total_bounds
        
        # Adaptive grid based on point distribution
        x_range = bounds[2] - bounds[0]
        y_range = bounds[3] - bounds[1]
        
        # Calculate optimal grid size based on point density
        optimal_cells = min(50, max(10, int(np.sqrt(len(points) / 2))))
        cell_size_x = x_range / optimal_cells
        cell_size_y = y_range / optimal_cells
        
        # Create grid
        x_coords = np.arange(bounds[0], bounds[2] + cell_size_x, cell_size_x)
        y_coords = np.arange(bounds[1], bounds[3] + cell_size_y, cell_size_y)
        
        # Count points in each cell
        density_grid = np.zeros((len(y_coords) - 1, len(x_coords) - 1))
        
        for point in points_gdf.geometry:
            x_idx = int((point.x - bounds[0]) / cell_size_x)
            y_idx = int((point.y - bounds[1]) / cell_size_y)
            
            if 0 <= x_idx < len(x_coords) - 1 and 0 <= y_idx < len(y_coords) - 1:
                density_grid[y_idx, x_idx] += 1
        
        return {
            'density_grid': density_grid,
            'cell_size': (cell_size_x, cell_size_y),
            'bounds': bounds,
            'max_density': np.max(density_grid),
            'avg_density': np.mean(density_grid),
            'density_std': np.std(density_grid),
            'hotspots': self._identify_hotspots(density_grid)
        }
    
    def _pattern_recognition(self, points):
        """Creative pattern recognition in spatial data."""
        if len(points) < 3:
            return {}
        
        points_gdf = gpd.GeoDataFrame(points)
        coords = np.array([[p.x, p.y] for p in points_gdf.geometry])
        
        patterns = {}
        
        # Directional patterns
        if len(coords) > 1:
            vectors = np.diff(coords, axis=0)
            angles = np.arctan2(vectors[:, 1], vectors[:, 0])
            
            # Circular statistics
            mean_angle = np.arctan2(np.mean(np.sin(angles)), np.mean(np.cos(angles)))
            angular_variance = 1 - np.sqrt(np.mean(np.cos(angles))**2 + np.mean(np.sin(angles))**2)
            
            patterns['directional'] = {
                'mean_angle_rad': mean_angle,
                'mean_angle_deg': np.degrees(mean_angle),
                'angular_variance': angular_variance,
                'directional_trend': 'strong' if angular_variance < 0.3 else 'weak'
            }
        
        # Spatial autocorrelation
        if len(coords) > 2:
            # Calculate distances between all points
            distances = []
            for i in range(len(coords)):
                for j in range(i + 1, len(coords)):
                    dist = np.linalg.norm(coords[i] - coords[j])
                    distances.append(dist)
            
            patterns['spatial_autocorrelation'] = {
                'avg_distance': np.mean(distances),
                'distance_std': np.std(distances),
                'clustering_tendency': 'high' if np.std(distances) < np.mean(distances) * 0.5 else 'low'
            }
        
        return patterns
    
    def _predictive_modeling(self, points, polygons):
        """Creative predictive modeling for spatial data."""
        if len(points) < 10:
            return {}
        
        points_gdf = gpd.GeoDataFrame(points)
        polygons_gdf = gpd.GeoDataFrame(polygons)
        
        # Prepare features for prediction
        features = []
        targets = []
        
        for idx, point in points_gdf.iterrows():
            # Extract features
            point_features = [
                point.geometry.x,
                point.geometry.y,
                # Add any additional point attributes here
            ]
            
            # Add polygon context features
            for poly_idx, polygon in polygons_gdf.iterrows():
                distance = point.geometry.distance(polygon.geometry)
                point_features.append(distance)
                # Add polygon attributes as features
                # point_features.extend([polygon.get('attr1', 0), polygon.get('attr2', 0)])
            
            features.append(point_features)
            # Set target variable (modify based on your data)
            targets.append(point.get('target_value', 0))
        
        # Train predictive model
        if len(features) > 0 and len(set(targets)) > 1:
            model = RandomForestRegressor(n_estimators=100, random_state=42)
            model.fit(features, targets)
            
            # Feature importance
            feature_importance = model.feature_importances_
            
            return {
                'model': model,
                'feature_importance': feature_importance,
                'prediction_accuracy': model.score(features, targets),
                'feature_names': ['x', 'y'] + [f'polygon_{i}_distance' for i in range(len(polygons_gdf))]
            }
        
        return {}
    
    def _create_advanced_visualization(self, points, polygons):
        """Create advanced interactive visualization."""
        points_gdf = gpd.GeoDataFrame(points)
        polygons_gdf = gpd.GeoDataFrame(polygons)
        
        # Calculate center for map
        all_geoms = list(points_gdf.geometry) + list(polygons_gdf.geometry)
        center_lat = np.mean([g.y for g in all_geoms])
        center_lon = np.mean([g.x for g in all_geoms])
        
        # Create base map
        m = folium.Map(
            location=[center_lat, center_lon],
            zoom_start=12,
            tiles='cartodbpositron'
        )
        
        # Add polygons with styling
        if len(polygons_gdf) > 0:
            folium.GeoJson(
                polygons_gdf,
                name='Polygons',
                style_function=lambda x: {
                    'fillColor': '#3186cc',
                    'color': '#000000',
                    'weight': 2,
                    'fillOpacity': 0.3
                },
                popup=folium.GeoJsonPopup(fields=list(polygons_gdf.columns))
            ).add_to(m)
        
        # Add points with clustering
        if len(points_gdf) > 0:
            marker_cluster = MarkerCluster(name='Points').add_to(m)
            
            for idx, point in points_gdf.iterrows():
                folium.Marker(
                    location=[point.geometry.y, point.geometry.x],
                    popup=folium.Popup(
                        f"<b>Point {idx}</b><br>" + 
                        "<br>".join([f"{k}: {v}" for k, v in point.items() if k != 'geometry']),
                        parse_html=True
                    ),
                    icon=folium.Icon(color='red', icon='info-sign')
                ).add_to(marker_cluster)
        
        # Add layer control
        folium.LayerControl().add_to(m)
        
        return m
    
    def _generate_creative_insights(self, results):
        """Generate creative insights from analysis results."""
        insights = []
        
        # Proximity insights
        if 'proximity_analysis' in results:
            prox = results['proximity_analysis']
            if 'avg_distance' in prox:
                if prox['avg_distance'] < 1000:
                    insights.append("Points show high spatial clustering, suggesting concentrated activity patterns.")
                elif prox['avg_distance'] > 5000:
                    insights.append("Points are widely dispersed, indicating distributed or sparse activity.")
        
        # Density insights
        if 'density_analysis' in results:
            density = results['density_analysis']
            if 'hotspots' in density and len(density['hotspots']) > 0:
                insights.append(f"Identified {len(density['hotspots'])} high-density hotspots that may represent activity centers.")
        
        # Pattern insights
        if 'pattern_analysis' in results:
            pattern = results['pattern_analysis']
            if 'directional' in pattern:
                if pattern['directional']['directional_trend'] == 'strong':
                    insights.append("Strong directional pattern detected, suggesting linear or corridor-based activity.")
        
        # Predictive insights
        if 'predictive_analysis' in results:
            pred = results['predictive_analysis']
            if 'prediction_accuracy' in pred and pred['prediction_accuracy'] > 0.7:
                insights.append("High prediction accuracy suggests strong spatial relationships in the data.")
        
        return insights
    
    def _generate_recommendations(self, insights):
        """Generate actionable recommendations based on insights."""
        recommendations = []
        
        for insight in insights:
            if "high spatial clustering" in insight:
                recommendations.append("Consider implementing targeted interventions in clustered areas.")
            elif "widely dispersed" in insight:
                recommendations.append("Explore strategies for connecting dispersed activities or services.")
            elif "hotspots" in insight:
                recommendations.append("Focus resources on identified hotspots for maximum impact.")
            elif "directional pattern" in insight:
                recommendations.append("Investigate linear infrastructure or transportation corridors.")
            elif "high prediction accuracy" in insight:
                recommendations.append("Leverage predictive models for planning and resource allocation.")
        
        return recommendations

# Usage example
if __name__ == "__main__":
    # Sample data
    points_data = [
        {'geometry': Point(0, 0), 'value': 10},
        {'geometry': Point(1, 1), 'value': 20},
        {'geometry': Point(2, 2), 'value': 15},
        # Add more points...
    ]
    
    polygons_data = [
        {'geometry': Polygon([(0, 0), (1, 0), (1, 1), (0, 1)]), 'type': 'zone_a'},
        {'geometry': Polygon([(1, 1), (2, 1), (2, 2), (1, 2)]), 'type': 'zone_b'},
        # Add more polygons...
    ]
    
    # Initialize and run analysis
    spatial_intelligence = AdvancedSpatialIntelligence()
    results = spatial_intelligence.creative_spatial_analysis(points_data, polygons_data)
    
    print("Analysis completed!")
    print("Insights:", results['insights'])
    print("Recommendations:", results['recommendations'])
Map Creation
  • Creative Visualizations: Innovative and unique map designs
  • Interactive Elements: Advanced interactive features
  • Custom Styling: Creative visual approaches
  • Performance Optimization: Efficient rendering with creative solutions
Data Analysis
  • Creative Analysis: Innovative analytical approaches
  • Pattern Recognition: Advanced pattern detection
  • Insight Generation: Creative interpretation of results
  • Problem Solving: Novel solutions to complex problems
SQL Execution
  • Creative Queries: Innovative query approaches
  • Complex Analytics: Advanced analytical techniques
  • Performance Optimization: Creative optimization strategies
  • Data Integration: Novel data combination methods

Grok-3 Mini

Best for: Fast reasoning, efficient problem solving, and cost-effective solutions

Key Capabilities

  • Fast Reasoning: Quick logical thinking and problem solving
  • Efficiency: Cost-effective for most use cases
  • Reliability: Consistent performance across tasks
  • Adaptability: Good adaptation to different problem types

Performance in Nika Tasks

Coding
  • Speed: Fast code generation with good quality
  • Quality: Good code structure and logic
  • Documentation: Adequate comments and documentation
  • Best For: Standard to moderate complexity tasks
Map Creation
  • Quick Maps: Fast generation of effective visualizations
  • Performance: Efficient rendering for typical datasets
  • Styling: Good visual design with templates
  • Best For: Regular mapping applications
Data Analysis
  • Fast Analysis: Quick processing of routine analyses
  • Standard Methods: Good performance on common operations
  • Interpretation: Adequate result explanation
  • Best For: Regular reporting and analysis
SQL Execution
  • Quick Queries: Fast execution of standard queries
  • Basic Optimization: Adequate query tuning
  • Error Handling: Good error management
  • Best For: Routine database operations

Use Case Recommendations

Choose Grok-3 When:

  • Complex Problem Solving: Multi-step reasoning and analysis
  • Innovation: Creative approaches to spatial challenges
  • Research Projects: Advanced research and development
  • Production Systems: Critical applications requiring creative solutions
  • Strategic Planning: Long-term planning and strategy development

Choose Grok-3 Mini When:

  • Quick Analysis: Fast problem solving and analysis
  • Cost Optimization: Budget-conscious projects
  • Standard Tasks: Routine analysis and reporting
  • Prototyping: Quick development and testing
  • Team Collaboration: Collaborative development environments

Configuration Examples

Grok-3 Configuration

const grok3Config = {
  provider: 'xai',
  model: 'grok-3',
  temperature: 0.4,
  maxTokens: 4096,
  systemPrompt: `You are an expert spatial analyst with creative problem-solving abilities. 
  Approach spatial challenges with innovative thinking and provide creative, 
  effective solutions for complex geospatial problems.`,
  features: {
    reasoning: 'advanced',
    creativity: 'high',
    problemSolving: 'innovative'
  }
};

Grok-3 Mini Configuration

const grok3MiniConfig = {
  provider: 'xai',
  model: 'grok-3-mini',
  temperature: 0.2,
  maxTokens: 2048,
  systemPrompt: `You are a fast, efficient spatial analyst. 
  Provide quick, reliable solutions for geospatial analysis and problem solving.`,
  features: {
    speed: 'optimized',
    efficiency: 'high',
    reliability: 'excellent'
  }
};

Performance Metrics

MetricGrok-3Grok-3 Mini
Response Time3-5 seconds1-2 seconds
Reasoning Quality9.3/107.8/10
Creativity9.4/107.5/10
Cost per Request$0.025$0.008
Reliability99.4%99.2%

Best Practices

For Grok-3

  1. Encourage Creativity: Ask for innovative approaches and solutions
  2. Provide Context: Give detailed background and problem context
  3. Request Reasoning: Ask for step-by-step reasoning processes
  4. Iterative Development: Build complex solutions incrementally

For Grok-3 Mini

  1. Clear Instructions: Provide specific, clear problem statements
  2. Use Templates: Leverage existing patterns and frameworks
  3. Focus on Efficiency: Prioritize speed and cost-effectiveness
  4. Batch Operations: Group related tasks for better efficiency

Integration with Nika

API Usage

import nikaplanet.com as nai

# Initialize with xAI
client = nai.Client(
    llm_provider='xai',
    model='grok-3'
)

# Creative spatial analysis
analysis_result = client.creative_spatial_analysis({
    'data': 'spatial_dataset.geojson',
    'analysis_type': 'innovative_pattern_recognition',
    'approach': 'creative_problem_solving',
    'output_format': 'comprehensive_report'
})

Workflow Integration

# Creative workflow for innovative spatial analysis
workflow = nai.Workflow()

# Use Grok-3 for creative problem definition
workflow.add_step(
    'problem_definition',
    model='grok-3',
    task='creative_problem_analysis'
)

# Use Grok-3 Mini for data preprocessing
workflow.add_step(
    'preprocess',
    model='grok-3-mini',
    task='data_preprocessing'
)

# Use Grok-3 for creative analysis
workflow.add_step(
    'analyze',
    model='grok-3',
    task='innovative_spatial_analysis'
)

# Use Grok-3 Mini for visualization
workflow.add_step(
    'visualize',
    model='grok-3-mini',
    task='create_visualization'
)

# Use Grok-3 for insight generation
workflow.add_step(
    'insights',
    model='grok-3',
    task='generate_creative_insights'
)

results = workflow.execute()

Get Expert Help

⌘I